Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38462671

RESUMEN

BACKGROUND: The association between low-frequency HIV-1 drug resistance mutations (DRMs) and treatment failure (TF) is controversial. We explore this association using NGS methods that accurately sample low-frequency DRMs. METHODS: We enrolled women with HIV-1 in Malawi who were either ART naïve (A), had ART failure (B), or had discontinued ART (C). At entry, A and C began an NNRTI-based regimen and B started a PI-based regimen. We used Primer ID MiSeq to identify regimen-relevant DRMs in entry and TF plasma samples, and a Cox proportional hazards model to calculate hazard ratios (HRs) for entry DRMs. Low-frequency DRMs were defined as ≤ 20%. RESULTS: We sequenced 360 participants. Cohort B and C participants were more likely to have TF than Cohort A participants. The presence of K103N at entry significantly increased TF risk among A and C participants at both high and low frequency, with HR of 3.12 [1.58-6.18, 95% CI] and 2.38 [1.00-5.67, 95% CI] respectively. At TF, 45% of participants showed selection of DRMs while in the remaining participants there was an apparent lack of selective pressure from ART. CONCLUSIONS: Using accurate NGS for DRM detection may benefit an additional 10% of the patients by identifying low-frequency K103N mutations.

2.
Front Genet ; 12: 707105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589115

RESUMEN

Survival of patients with metastatic melanoma varies widely. Melanoma is a highly proliferative, chemo-resistant disease. With the recent availability of immunotherapies such as checkpoint inhibitors, durable response rates have improved but are often still limited to 2-3 years. Response rates to treatment range from 30 to 45% with combination therapy however no improvement in overall survival is frequently observed. Of the available therapies, many have targeted the BRAFV600E mutation that results in abnormal MAPK pathway activation which is important for regulating cell proliferation. Immune checkpoint inhibitors such as anti-PD-1 and anti-PD-L1 offer better success but response rates are still low. Identifying biomarkers to better target those who will respond and identify the right combination of treatment is the best approach. In this study, we utilize data from the Cancer Cell Line Encyclopedia (CCLE), including 62 samples, to examine features of gene expression (19K+) and copy number (20K+) in the melanoma cell lines. We perform a clustering analysis on the feature set to assess genetically similarity among the cell lines. We then discover which specific genes and combinations thereof maximize cluster density. We design a feature selection approach for high-dimensional datasets that integrates multiple disparate machine learning techniques into one cohesive pipeline. Our approach provides a small subset of genes that can accurately distinguish between the clusters of melanoma cell lines across multiple types of classifiers. In particular, we find only the 15 highest ranked genes among the original 19 K are necessary to achieve perfect or near-perfect test split classification performance. Of these 15 genes, some are known to be linked to melanoma or other cancer progressions, while others have not previously been linked to melanoma and are of interest for further examination.

3.
PeerJ ; 7: e7814, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31637119

RESUMEN

The pelagic brown macroalga Sargassum supports rich biological communities in the tropical and subtropical Atlantic region, including a variety of epiphytic invertebrates that grow on the Sargassum itself. The thecate hydroid Aglaophenia latecarinata is commonly found growing on some, but not all, Sargassum forms. In this study, we examined the relationship between A. latecarinata and its pelagic Sargassum substrate across a broad geographic area over the course of 4 years (2015-2018). The distribution of the most common Sargassum forms that we observed (Sargassum fluitans III and S. natans VIII) was consistent with the existence of distinct source regions for each. We found that A. latecarinata hydroids were abundant on both S. natans VIII and S. fluitans III, and also noted a rare observation of A. latecarinata on S. natans I. For the hydroids on S. natans VIII and S. fluitans III, hydroid mitochondrial genotype was strongly correlated with the Sargassum substrate form. We found significant population genetic structure in the hydroids, which was also consistent with the distributional patterns of the Sargassum forms. These results suggest that hydroid settlement on the Sargassum occurs in type-specific Sargassum source regions. Hydroid species identification is challenging and cryptic speciation is common in the Aglaopheniidae. Therefore, to confirm our identification of A. latecarinata, we conducted a phylogenetic analysis that showed that while the genus Aglaophenia was not monophyletic, all A. latecarinata haplotypes associated with pelagic Sargassum belonged to the same clade and were likely the same species as previously published sequences from Florida, Central America, and one location in Brazil (São Sebastião). A nominal A. latecarinata sequence from a second Brazilian location (Alagoas) likely belongs to a different species.

4.
Genes Dev ; 33(19-20): 1416-1427, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31488576

RESUMEN

Polycomb-repressive complex 2 (PRC2) is a histone methyltransferase that is critical for regulating transcriptional repression in mammals. Its catalytic subunit, EZH2, is responsible for the trimethylation of H3K27 and also undergoes automethylation. Using mass spectrometry analysis of recombinant human PRC2, we identified three methylated lysine residues (K510, K514, and K515) on a disordered but highly conserved loop of EZH2. Methylation of these lysines increases PRC2 histone methyltransferase activity, whereas their mutation decreases activity in vitro. De novo histone methylation in an EZH2 knockout cell line is greatly impeded by mutation of the automethylation lysines. EZH2 automethylation occurs intramolecularly (in cis) by methylation of a pseudosubstrate sequence on a flexible loop. This posttranslational modification and cis regulation of PRC2 are analogous to the activation of many protein kinases by autophosphorylation. We propose that EZH2 automethylation allows PRC2 to modulate its histone methyltransferase activity by sensing histone H3 tails, SAM concentration, and perhaps other effectors.


Asunto(s)
Histonas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Activación Enzimática/fisiología , Regulación de la Expresión Génica , Humanos , Lisina/metabolismo , Metilación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...